

REAL-TIME PCR INSTRUMENT SET-UP AND RESULT ANALYSIS

1. CFX96[™] Real-time PCR Detection System (CFX Manager[™] Software)

1.1. Real-time PCR Instrument Set-up

Note: CFX96[™] Real-time PCR Detection System (Bio-Rad) experiment setup can be divided into three steps: Protocol Setup, Plate Setup, and Start run.

A. Protocol Setup

1) In the main menu, select File \rightarrow New \rightarrow Protocol to open Protocol Editor.

Fig. 1. Protocol Setup. Create a new protocol or load an existing protocol for the run

Step	No. of cycles	Temperature	Duration
1	1	50°C	2 min
2	1	95°C	2 min
	5	95°C	5 sec
3	5	70°C	20 sec
4		95°C	5 sec
5*	45	67°C*	10 sec
6		76°C	20 sec
7	1	95°C	10 sec
8	1	40°C	1 min
9*	1	Melting curve 40°C ~	- 90°C (Increment:0.5°C)

2) In **Protocol Editor**, define the thermal profile as follows:

*Plate read at Step 5 and 9. Fluorescence is detected at 67°C and Melting curve.

Fig. 2. Protocol Editor

3) Click the box next to Sample Volume to directly input 25 μ L.

3) Click OK and save the protocol to open the Experiment Setup window.

Fig. 3. Experiment Setup: Protocol

B. Plate Setup

1) From Plate tab in Experiment Setup, click Create New to open Plate Editor window.

Run Set	Run Setup											
M Pa	rotocol [🔢 Plate	🕪 Start	Run								
Ca	Create New Express Load											
Sele	Select Existing QuickFlate_96 wells_All Channels.pltd 🗸											
Selec	Selected Plate											
Quick	QuickPlate_96 wells_All Channels.pltd Edit Selected											
Fluor	Preview Fluorophores: FAM, HEX, Texas Red, Cy5, Quasar 705 Flate Type: BR Clear Scan Mode: All Channels											
	1	2	3	4	5	6	7	8	9	10	11	12
A	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk
В	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk
с	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk
D	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk
E	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk
F	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk
G	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk
н	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk
	<pre></pre>											

Fig. 4. Plate Editor. Create a new plate

2) Click Select Fluorophores to indicate the fluorophores (FAM, HEX, ROX, and

Un	do 🎮	Redo [Save User Prefe	Zoom 10	00%	Ct Fluorophores	Mode All Channel	s 🗸 🛁 🐔 W	Vell Groups	Trace	e Styles 🔍 Spreadsheet View/Impo	rter
4	1	2	3	4		Channel	Fluorophore	Selected	Color	4	Select Fluorophores	
						1	FAM				Samla Tana	
					-		SYBR.				Sampre Type	_
						2	HEX	N				
_					_		TET				Target Names	
							Cal Orange 560		()		Load SYBR (none) ~	٩
							Cal Gold 540					
1							VIC				Sample Names	
						3	ROX			=	Load (none) ~	4
+			-		-		Texas Red					
							Cal Red 610		1		Biological Group	
							Tex 615				r 1 🗆 (name)	
			l i i i i i i i i i i i i i i i i i i i			4	Cy5		4		Tord Cuones	-10
						1	Ouasar 670			Y	Show Biological Groups	G
1									OK Can	el		-
					-						Replicate #	
-											inepiroute #	
											LoadI	

CY5) that will be used and click OK.

Fig. 5. Select Fluorophores (FAM, HEX, ROX, and CY5)

3) Select the wells where the PCR tube will be placed and select its sample type from the **Sample Type** drop-down menu.

- Unknown: Clinical samples
- Negative Control
- Positive Control (Wild-type Control)

4) Click on the appropriate checkboxes (**FAM**, **HEX**, **ROX**, and **CY5**) to specify the fluorophores to be detected in the selected wells.

5) Type in Sample Name and press enter key.

6) In Settings of the Plate Editor main menu, choose Plate Size (96wells) and Plate Type (BR White).

Un Sel	ido (? tup Wiza	Plate Plate Num	<mark>Size</mark> Type ber Conve	ntion +	38 ✓ 96 48	4 Wells Wells Wells	Mode	All Chan	inels y	- 🚄 v	Vell Group	s 🔀 Trac	e Styles 🔍 Spreadsheet View/Importer
4	1	Units 2		•	5	6	7	8	9	10	11	12	Select Fluorophores
	Unk FAM HEX ROX Cy5	Unk FAM HEX ROX Cy5	Unk FAM HEX ROX Cy5	Unk FAM HEX ROX Cy5	Unk FAM HEX ROX Cy5	Unk FAM HEX ROX Cy5	Unk FAM HEX ROX Cy5	Unk FAM HEX ROX Cy5	Unk FAM HEX ROX Cy5	Unk FAM HEX ROX Cy5	Unk FAM HEX ROX Cy5	Unk FAM HEX ROX Cy5	Sample Type Unknown
	Unk FAM HEX ROX Cy5	Unk FAM HEX ROX Cy5	Unk FAM HEX ROX Cy5	Unk FAM HEX ROX Cy5	Unk FAM HEX ROX Cy5	Unk FAM HEX ROX Cy5	Unk FAM HEX ROX Cy5	Unk FAM HEX ROX Cy5	Unk FAM HEX ROX Cy5	Unk FAM HEX ROX Cy5	Unk FAM HEX ROX Cy5	Unk FAM HEX ROX Cy5	Load V FAM (nona) V Load MEX (nona) V Load D BOX (nona) V Load V Cy5 (nona) V
	Unk FAM HEX ROX Cy5	Unk FAM HEX ROX CyS	Unk FAM HEX ROX Cy5	Unk FAM HEX ROX Cy5	Unk FAM HEX ROX Cy5	Unk FAM HEX ROX Cy5	Unk FAM HEX ROX Cy5	Unk FAM HEX ROX Cy5	Unk FAM HEX ROX Cy5	Unk FAM HEX ROX Cy5	Unk FAM HEX ROX Cy5	Unk FAM HEX ROX Cy5	Sample Names Load Conne>
	Unk FAM HEX ROX Cy5	Unk FAM HEX ROX Cy5	Unk FAM HEX ROX Cy5	Unk FAM HEX ROX Cy5	Unk FAM HEX ROX Cy5	Unk FAM HEX ROX Cy5	Unk FAM HEX ROX Cy5	Unk FAM HEX ROX Cy5	Unk FAM HEX ROX Cy5	Unk FAM HEX ROX Cy5	Unk FAM HEX ROX Cy5	Unk FAM HEX ROX Cy5	Biological Group Load Conne>

Fig. 6. Plate Setup

- 7) Click **OK** to save the new plate.
- 8) You will be returned to the **Experiment Setup** window.

Run Set	Run Setup											
M Pr	rotocol [🔢 Plate	🕪 Start	Run								
-		_						-		1		
Cr	Light Review											
Sele	Select Existing											
Select	Detected flate											
Plate	plate setup.pltd Edit Selected											
Fluor	Preview Fluorophores: FAM. MEX. ROX. Cv5 Plate Type: BR Clear Scan Mode: All Channels											
	Fluorophores: FAM. HEX. KUX. Cy5 Plate Type: BR Clear Scan Mode: All Channels 1 2 3 4 5 6 7 8 9 10 11 12											
A	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk
В	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk
с	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk
D	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk
E	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk
F	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk
G	G Unk											
н	X Unk											
	Image: Contract of the second seco											

9) Click Next to Start Run.

C. Start Run

1)	From	Start	Run	tab	in	Experiment Setu	p . click	Close	Lid t	o close	the	instrument	lid
,	1 I UIII	otart	Null	เฉบ		Experiment Oetu	\mathbf{p} , oner	01036		0 01030	uic	monument	nu

Run Setup							×
M Protoco	l 🋄 Plate	🕪 Start Run					
Run Informa	ation						
Protocol:	TB-MDR Protoc	col.prcl					
Plate:	plate setup.pltd	1					
notes.							^
							~
Scan Mode:	All Channels						
Start Kun o	on Selected Bloc	k(s)		1			
	Block Name	Δ	Туре	Run Status	Sample Volume	ID/Bar Code	
Select i	All Blocks Block	💋 Open Lid		Close Lid		▶ Start Run.	
						<< Prev Ne	xt >>

Fig. 8. Close Lid

2) Click Start Run.

3) Store the run file either in My Documents or in a designated folder. Input the file name, click **SAVE**, and the run will start.

1.2. Data Analysis

A. Create folders for data export

1) To save data for all of amplification curve detection step from the result file, create one folder.

2) Folder name may be as desired by user.

B. Pre-settings for Data Analysis in CFX Manager™

	View B	Settrap	Tools	(12dt 1740)		Well Group	e At we			•	7		1.200
	-		entanar Da				Corve Data			- 1441 9	ind Park	The weeks of	Okonevalitei 🧐 02: 🐑 Pun Information
							1111	11					
-	N H	RX IV D	c Pest 610	N Que	Cycles or E15	1	-0		No. State				Bus Norther 1
-	NH I	RX IV C	e Awar de ta	R Que	Cycles or 675	1	- 1 - 1 - 2		an Soute	ND-SI		ú	The Number 2
-	2) H	EX IV C	a Red 610 3 UNA	II Can	Cycles or ED S Unk	e Una	7 1 1 1 1	I UNK	B2 Log Sinder Dhik	10 Unit	11	U Unk	Bee Nurber 3 Well () Rur + Cortext () Serue () CD () H11 Cul Fod 6 Unive () 20 ()
-	IN H	IX IX C	3 Unit Unit	20 Out	Cycles or ETC 5 Unit	E Una	7 108	I UNK UNK	R Ing Sinder UMA UMA	10 Unic Unic	11 Uvit	U Unit Unit	Ben Number 3 Well () Rue & Cartest () Serule () CO () 411 Cul Red Clove () 30.0 412 Cul Red Clove () 70 413 Cul Red Clove () 70 410 Cul Red () 1000 () 700
7	1 22 H	EX IV C	Cherrister J Unik Unik	N 0 1	Cyclins or ETS T Unit Unit	E Una Una Una	7 108	I Unk Unk	to Ing State Unak Unak Unak	10 Umic Umic Umic	11 Unk Unk	U Link Link Link	Bite Number 3 Well (0) Ruer is Context (0) Seruit (0) COL (0) mit1 Call Field 5 Union 30.41 mit2 Call Field 5 Union 57,79 all Field Union 57,05 all Field Union 58,05
7 744	1 1 106 106 106	I II D	3 Unik Unik Unik Unik	2 0.0 4 US 0.0 10 10 10 10 10 10 10 10 10 10 10 10 10	Cycles or CS Unit Unit Unit Unit	E Una Una Una Una	7 088 088 088 088	I Unik Unik Unik Unik	ang Sinder Dink Unik Unik Unik	10 Unic Unic Unic	11 Unk Unk Unk	U Unik Unik Unik	Bits Norter 3 Weid Q, Barr & Content Q, Seruin Q, CO, Q n11 Cul Red C losice 30 41 n11 Cul Red C losice 5.79 n01 7.64 10 50 5.79 n01 FAM Unice 55.00 45.00 45.00 45.00 15.00 ADD FAM Unice 35.00 55.00 55.00 55.00 55.00
7 AAA	1 27 H	2 UNA UNA UNA UNA	J UNA UNA UNA UNA UNA	+2 2 2 3 2 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Cycles ar 10 Unit Unit Unit Unit	E Una Una Una Una	7 088, 068 088 088	I Unk Unk Unk Unk	ang Sinder Sing Sinder Umik Umik Umik Umik	10 Unic Unic Unic Unic Unic	11 Unk Unk Unk Unk	13 1384 1386 1386 1386	West Q Rur e Centers: Q Seruls: Q CO Q mt1 Cut Red 5 Unive S Sold 5 78 5 7
7 7 10 7 10 7 10	T T HI T THE T HE T HE T HE T HE T HE T HE T H	2 UNA UNA UNA UNA UNA UNA	J UNA UNA UNA UNA UNA UNA UNA	12 22 4 23 23 23 23 23 23 23 23 23 23 23 23 23	Cycles or CD T Unit Unit Unit Unit	E Una Una Una Una Una	7 016 016 016 016	I Unk Unk Unk Unk Unk Unk	ag Sinder B Ursk Ursk Ursk Ursk Ursk Ursk	10 Unk Unk Unk Unk Unk	11 UH UH UH UH UH	13 108 108 108 108 108	Ben Number 3 Web (a) Rue in Center (a) Seruitin (b) CE (b) ett) Cul Rud 6 Union 3 (b) 0 (c) 0 (c) Rue (c) Rue (c) Rue (c) 0 (c) Rue (c) 0 (c) Rue (c) Rue (c) 0
	1 27 H	2 048 048 048 048 048 048	Therefore 3 Unik Unik Unik Unik Unik Unik	27 27 4 108 108 108 108 108 108 108	Cycles ar 12 2 208 208 208 208 208 208 208 208	6 Unit Unit Unit Unit Unit	7 088 088 088 088 088 088 088	I UNK UNK UNK UNK UNK UNK	a link link link link link	10 Unk Unk Unk Unk Unk Unk	11 UNA UNA UNA UNA UNA	U 198 198 198 198 198 198	Bite Norther 3 Well 0 Rur e Carline 30.41 M11 Call Field 5 Union 30.41 M12 Call Field 5 Union 57.91 M13 Call Field 5 Union 57.91 M14 Field Union 55.05 M15 Field Union 35.05 M15 Field Union 35.36 M15 Field Union 35.36 M15 Field Union 35.36 M16 Field Union 35.36 M15 Field Union 35.36

1) After the test, click the Quantitation and Melt Curve tab to confirm and analyze the results.

Fig. 9. Amplification curve and Melt Curve results

RESULTS ANALYSIS

1. Analysis Summary Guide

2. Interpretation of Results

2.1. MTB Detection Analysis

C _t value	Result
≤ 38	Detected (+)
> 38 or N/A	Not detected (-)

	Res	sult				
Case	MTB (CY5 of Mix B)	IC (HEX of Mix A)	Interpretation			
1	+	+	MTB detected			
2	-	+	MTB not detected			
3	+	-	MTB detected, IC Invalid ¹⁾			
4	-	-	Invalid ¹⁾			

2.2. MDR Detection Analysis

Result of MDR analysis is dependent on result of MTB detection in following:

A. In case of 'MTB detected'

		Result				
Case	IC (HEX of Mix A)	RIF-R (FAM of Mix A, FAM of Mix B, ROX of Mix B)	INH-R (ROX of Mix A, CY5 of Mix A, HEX of Mix B)	Interpretation		
1		+	+	INH-R & RIF-R detected		
2		+	-	RIF-R detected		
3	+	-	+	INH-R detected		
4		-	-	MTB detected		
5	-	+/-	+/-	Invalid ¹⁾		

B. In case of 'MTB not detected'

		Result				
Case	IC (HEX of Mix A)	IC RIF-R INH-R K of Mix A) (FAM of Mix A, (ROX of Mix A, FAM of Mix B, CY5 of Mix A, ROX of Mix B) HEX of Mix B)		Interpretation		
1		+	+	Invalid ²⁾		
2		+	-	Invalid ²⁾		
3	+	-	+	Invalid ²⁾		
4		-	-	-		
5	-	+/-	+/-	Invalid ¹⁾		

C. In case of MTB detection is 'Invalid'

Case	Result			
	IC (HEX of Mix A)	RIF-R (FAM of Mix A, FAM of Mix B, ROX of Mix B)	INH-R (ROX of Mix A, CY5 of Mix A, HEX of Mix B)	Interpretation
1		+	+	
2	• +	+	-	
3		-	+	Invalid ³⁾
4		-	-	
5	-	+/-	+/-	

Note:

Whether a specimen is a mutant or not is determined by \triangle Tm between the specimen and the positive control.

For each channel, mutant is determined by comparing the difference in Tm values (\triangle Tm) between the peak of the specimen and that of the positive control:

- Wild peak(sensitive): $\triangle \text{Tm} < 1.5^{\circ}\text{C}$

- Mutant peak(resistant): △Tm ≥1.5°C

2.3 Supplementary explanation about Invalid

Invalid¹⁾ Repeat the test from nucleic acid extraction using another aliquot of the original specimen. If the same result is shown in re-extracted nucleic acid, please dilute the specimen $(1/10 \sim 1/100)$ in RNase-free Water and repeat the extraction and PCR.

Invalid²⁾ MTB is not detected but drug-resistance is detected. Repeat the test from nucleic acid extraction using another aliquot of the original specimen. If the same result is shown, refer to the results of other diagnostic methods.

Invalid³) MTB test result is valid. To confirm the result of drug-resistance, repeat the test from nucleic acid extraction using another aliquot of the original specimen. If the same result is shown in re-extracted nucleic acid, please dilute the specimen (1/10~1/100) in RNase-free Water and repeat the extraction and PCR.

3. Application to Clinical Samples

Sample 1

MTB detec	MDR detection		on		
		401 303 10 10 10 10 10 10 10 10 10 10 10 10 10	R D Cole		
Name	FAM	HEX	ROX	CY5	Interpretation
	RIF-R	IC	INH-R	INH-R	
TB-MDR Mix A	+	26.47	-	-	
	RIF-R	INH-R	RIF-R	МТВ	
	-	+	-	37.71	

Sample 2

MTB detect		M	DR detecti	on	
Name	FAM	HEX	ROX	CY5	Interpretation
	RIF-R	IC	INH-R	INH-R	
TB-MDR Mix A	-	28.09	-	-	
	RIF-R	INH-R	RIF-R	МТВ	MIB(+), KIF-S, INH-S
	-	-	-	36.9	

Note:

Whether a specimen is a mutant or not is determined by \triangle Tm between the specimen and the positive control.

For each channel, mutant is determined by comparing the difference in Tm values (\triangle Tm) between the peak of the specimen and that of the positive control:

- Wild peak(sensitive): △Tm <1.5℃

- Mutant peak(resistant): △Tm ≥1.5°C

RIF-R: drug resistance to rifampicin; INH-R: drug resistance to isoniazide

RIF-S: drug sensitive to rifampicin; INH-S: drug sensitive to isoniazide

28/11/2023 V1.0

TROUBLESHOOTINGS

TB-MDR Multiplex PCR Detection				
OBSERVATION	PROBABLE CAUSE	SOLUTION		
	The fluorophores for data analysis do not comply with the protocol	Select the correct fluorophores for data analysis and export the data again. There is no need to repeat the test in this case.		
	Incorrect setting of real-time thermal cycler	Please check the thermal cycling conditions and repeat the test under the correct settings.		
No signal	Incorrect storage or past expiry date of the test kit	Please check the storage conditions (See page 11) and the expiry date (refer to label) of the test kit and use a new kit if necessary.		
	Nucleic acid extraction failure	No signal including IC may indicate loss of nucleic acid during extraction. Make sure that you use recommended extraction method. If due to inhibitors, re-extract the original specimen or dilute the specimen (1/10~1/100) in RNase-free Water and		
No Internal Control signal	High load of specimen's nucleic acid	If target pathogen signal is observed but not IC, then IC amplification may have been inhibited by high titer of target pathogen. In order to confirm IC signal, dilute the specimen (1/10~1/100) in RNase-free Water and repeat the test from extraction step.		
	Presence of inhibitor	Pleasedilutethespecimen(1/10~1/100)in RNase-freeWaterandrepeatthetestfrom extraction step.		
Putative false positive or target signals observed in Negative Control	Contamination	Decontaminate all surfaces and instruments with sodium hypochlorite and ethanol. Only use filter tips throughout the procedure and change tips between tubes. Repeat entire procedure from nucleic acid extraction to detection with a new set of reagents.		

TB-MDR Multiplex PCR Detection				
OBSERVATION	PROBABLE CAUSE	SOLUTION		
	Error in specimen collection	Please check the specimen collection method, and re-collect specimen.		
	Incorrect storage of the specimen	Please re-collect the specimen and repeat the entire procedure. Ensure that the specimen is stored as recommended.		
Putativo falso	Error in nucleic acid extraction	Please check the nucleic acid extraction procedure as well as nucleic acid concentration, and re-extract the nucleic acid.		
negative or no signal observed in Positive Control	Error in adding nucleic acid to corresponding PCR tubes	Check the sample numbers of tubes containing nucleic acid and make sure to add nucleic acid into the correct PCR tubes and carefully repeat the test if necessary.		
	Presence of inhibitor	Please dilute (1/10~1/100) the template nucle acid with RNase-free Water and repeat the te with the diluted nucleic acid.		